Y=3x^2+-75

Simple and best practice solution for Y=3x^2+-75 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y=3x^2+-75 equation:



=3Y^2+-75
We move all terms to the left:
-(3Y^2+-75)=0
We use the square of the difference formula
-(3Y^2-75)=0
We get rid of parentheses
-3Y^2+75=0
a = -3; b = 0; c = +75;
Δ = b2-4ac
Δ = 02-4·(-3)·75
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{900}=30$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30}{2*-3}=\frac{-30}{-6} =+5 $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30}{2*-3}=\frac{30}{-6} =-5 $

See similar equations:

| 3x-4=-1x+1 | | 26x-7x=32 | | 18=10011=x | | 18/100=11/x | | y^2+34y+240=0 | | 2(x+7)-2=5(x-6)+9 | | 3^2-2n=16/9 | | x3−6=4 | | 2(2z-3)=3z+z-2z | | 3x–4=–x+1 | | 12+8a=3a-18 | | 5x-30/3=-20 | | 7x+3=15x+1=180 | | 4x+18=7(x+) | | 12=8a=3a-18 | | 7w-3=2w-18 | | 2g+18=16-4(g=7) | | 3x+2=4x-11 | | (4n+12)(n-5)=0 | | 5n=7(n+1) | | 7.3h=2.7h | | 103x=400 | | (3x-4)=2(x+6) | | 10x/8=300 | | 7y-8=2y+12+y | | 6k(k+6)=0 | | 10x2=320 | | q–25=1 | | 12+c4=4 | | 3c+8=1 | | 5a−1+2a+5+a=9a+3a+8−5a−6 | | 16.x-11=22-2x |

Equations solver categories